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ABSTRACT 
Defining outliers by their distance to neighboring examples 
is a popular approach to finding unusual examples in a data 
set. Recently, much work has been conducted with the goal 
of finding fast algorithms for this task. We show that a sim- 
ple nested loop algorithm that in the worst case is quadratic 
can give near linear time performance when the data is in 
random order and a simple pruning rule is used. We test 
our algorithm on real high-dimensional data sets with mil- 
lions of examples and show that the near linear scaling holds 
over several orders of magnitude. Our average case analy- 
sis suggests that much of the efficiency is because the time 
to process non-outliers, which are the majority of examples, 
does not depend on the size of the data set. 

. 

1. INTRODUCTION 
Detecting outliers, examples in a database with unusual 
properties, is an important data mining task. Recently re- 
searchers have begun focusing on this problem and have at- 
tempted to apply algorithms for finding outliers to tasks 
such as fraud detection [7], identifying computer network in- 
trusions [18, lo], data cleaning [21], and detecting employers 
with poor injixy histories[l7]. 

Outlier detection has a long history in statistics [3, 131, but 
has largely focussed on univariate data with a known distri- 
bution. These two limitations have restricted the ability to 
apply these types of methods to large real world databases 
which typically have many different fields and have no easy 
way of characterizing the multivariate distribution of exam- 
ples. Other researchers, beginning with the work by Knorr 
and Ng'[l-6]-ha?e%ak3n a-non-p&rametric approach and pro- 
posed using an example's distance to its nearest neighbors 
as a measure of unusualness [2, 19, 17, lo]. 

Although distance is an effective non-parametric approach 
to detecting outliers, the drawback is the amount of com- 
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putation time required. Straightforward algorithms, such as 
those based on nested loops, typically require O(NZ) dis- 
tance computations. This quadratic scaling means that it 
will be very difficult to  mine outliers as we tackle increas- 
ingly larger data sets. This problem is a major one for many 
real databases where there are often miilions of records. 

Recently, researchers have presented many different algo- 
rithms for efficiently finding distance based outliers. These 
approaches vary from spatial indexing trees to partitioning 
of the feature space with clustering algorithms [19]. The 
common goal is developing algorithms that scale to large 
real data sets. 

In this paper, we show that one can modify a simple al- 
gorithm based on nested loops, which would normally have 
quadratic scaling behavior, to yield near linear time mining 
on real, large, and high-dimensional data sets. Specifically, 
our contributions are: 

0 We show that an algorithm based on nested loops in 
conjunction with randomization and a simple pruning 
rule has near linear time performance on many large 
real data sets. Previous work reported quadratic per- 
formance for algorithms based on nested loops [16, 17, 
191. 

We demonstrate that our algorithm scales to real data 
sets with millions of examples m d  many features, both 
continuous and discrete. To our knowledge we have 
run our algorithm on the largest reported data sets to 
date and obtaingd among the beg  scaling re!uLtsfor 
real data sets. Other work has reported algorithms 
with linear time mining but only for low-dimensional 
problems (less than 5) [16, 171 or have only tested the 
scaling properties on simple synthetic domains. 

We analyze why our algorithm performs so well. The 
result of an average case analysis suggests that under 
certain conditions, the time to process non-outliers, 
which are the large majority of points, does not depend 
on the size of the data set. 

The remainder of this paper is organized as follows. In the 
next section, we review the notion of distance based outliers 
and present a simple nested loop algorithm that will be the 
focus of this paper. In Section 3, we show that although 



our simple algorithm has poor worst case scaling properties, 
for many large, high-dimensional, real data sets the actual 
performance is extremely good and is close t o  linear. In 
Section 4, we analyze our algorithm and attempt to expiain 
the performance with an average case analysis. In Section 5,  
we present examples of discovered outliers to give the readers 
a qualitative feel for how the algorithm works on real data. 
Finally, we conclude this paper by discussing limitations and 
directions for future work. 

2. DISTANCE BASED OUTLIERS 
A popular method of identifying outliers is by examining 
the distance to an example’s nearest neighbors [19, 17, 16, 
21. In this approach, one looks at the lcca! neighborhood of 
points for an example typically defined by the k nearest ex- 
amples (also known as neighbors). If the neighboring points 
are relatively close then the example is considered normal; 
if the neighboring points are far away, then the example is 
considered unusual. The advantages of distance based out- 
liers are that no explicit distribution needs to be defined to 
determine unusualness, and that it can be applied to any 
feature space for which we can define a distance measure. 

Given a distance measure on a feature space, there are many 
different definitions of distance based outliers. Three popu- 
lar definitions are 

1. Outliers are the examples for which there are less than 
p other examples within distance d [16, 171. 

kth nearest neighbor is greatest [19]. 
2. Outliers are the top n examples whose distance to the 

3. Outliers are the top A examples whose average distance 
to the k nearest neighbors is greatest [2, lo]. 

There are several minor differences between these defini- 
tions. The first definition does not provide a ranking and 
requires specifying a distance parameter d. Ramaswarny et 
al. [19] argue that this parameter could be difficult to deter- 
mine and may involve trial and error to guess an appropri- 
ate value. The second definition only considers the distance 
to the kth neighbor and ignores information about closer 
points. Finally, the last definition accounts for the distance 
to each neighbor but is slower to  calculate than definition 1 
or 2. However, all of these definitions are based on a near- 
est neighbor density estimate [ll] to determine &he points 
in low probability regions which are considered outliers. 

Researchers have tried a variety of approaches to find these 
outliers efficiently. The simplest are those using nested loops 
[16, 17, 191. In the basic version one compares each example 
with every other example to determine its k nearest neigh- 
bors. Given the neighbors for each example in the data set, 

definition. This approach has quadratic complexity as we 
must make all pairwise distance computations between ex- 
amples. 

I 
I 

simply select the top A candidates according to the outlier 

I 
I Another method for finding outliers is to use a spatial in- 
I dexing structure such as a KD-tree [4], R-tree [12], or X-tree 

[5] to find the nearest neighbors of each candidate point [16, 

17, 191. One queries the index structure for the closest k 
points to each example, and a before one simply selects 
the top candidates according t o  the outlier definition. For 
low-dimensional data sets this approach can vork extremely 
well and potentially scales as N log N if the index tree can 
find an example’s nearest neighbors in l o g N  time. How- 
ever, index structures break down as the dimensionality in- 
creases. For example, Breunig et al. [8] used a variant of 
the X-tree to do nearest neighbor search and found that the 
index on!y worked we!] fcr low dimeosions, less than 5, and 
performance dramatically worsened for just 10 or 20 dimen- 
sions. In fact, for high-dimensional data they recommended 
sequential scanning over the index tree. 

A few researchers have proposed partitioning the space into 
regions and thus allowing faster determination of the near- 
est neighbors. For each region, one stores summary statistics 
such as the minimum bounding rectangle. During nearest 
neighbor search, one compares the example to the bounding 
rectangle to determine if it is possible for a nearest neighbor 
to come from that region. If it is not possible, all points 
in the region are eliminated as possible neighbors. Knorr 
and Ng [16] partition the space into cells that  are hyper- 
rectangles. This yields a complexity linear in N but expo- 
nential in the number of dimensions. They found that this 
cell based approach outperformed the nested loop algorithm, 
which is quadratic in N, only for four or less dimensions. 
Others use a linear time clustering algorithm to partition 
the data set [19, 101. With this approach, Ramaswamy et al. 
demonstrated much better performance compared with the 
nested loop and indexing approaches on a low-dimensional 
synthetic data set. Eowever, their experiments did not test 
how it would scale on larger and higher-dimensional data. 

Finally, a few researchers have advocated projections to find 
outliers. Aggrawal and Yu [l] suggest that because of the 
curse of dimensionality one should focus on finding out- 
liers in low-dimensional projections. Angiulli and Pizzuti 
[2] project the data in the fulI feature space multiple times 
onto the interval [0,1] with Hilbert space filling curves. Each 
successive projection improves the estimate of an example’s 
outlier score in the full-dimensional space. Their initial scal- 
ing results are promising, and appear to be close to linear, 
however they have reported results on only two synthetic 
domains. 

In this paper, we show that the simplest type of algorithm 
based on nested loops in conjunction with randomization 
and a pruning rule gives state of the art performXncK -Ta- 
ble l shows our variation of the nested loop algorithm in 
more detail. The function distance computes the distance 
between any two examples using, for example, Euclidean 
distance for continuous features and Hamming distance for 
discrete features. The score function can be any monoton- 
ically decreasing function of the nearest neighbor distances 
such as the distance to the lcth nearest neighbor, or the av- 
erage distance to the IC neighbors. 

The main idea in our nested loop algorithm is that for each 
example in D we keep track of the closest neighbors found 
so far. When an example’s closest neighbors achieve a score 
lower than the cutoff we remove the example because it can 
no longer be an outlier. As we process more examples, the al- 
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. Table 1: A simple algorithm for finding distance based outliers. Lowercase variables represent  scalar values 
and  uppercase var iabks  represeii ts  sets. 

Procedure: Find Outliers 
Input:  k,  the number of nearest neighbors; n, the number of outliers to return; D ,  a set of examples in 
random order. 
Output :  0, a set of outliers. 
Let maxdist(x, Y) return the maximum distance between x and an example in Y .  
Let Closest(x, Y, k) return the k closest examples in Y to x. 
begin 
1. c t 0 
2. 0 t 0 // initialize to the empty set 
3. while B t get-next-block(D) { 
4. 
5 .  
6. 
7. 
8. 
9. 
10. remove b from B 

12. 0 t Top(B U 0,n)  
13. c t min(score(0)) for all o in 0 
14. } 
15. r e t u r n  0 

// set the cutoff for pruning to 0 

// load a block of examples from D 
Neighbors(b) t 0 for all b in B 
for each d in D { 

for each b in B, b # d { 
if INeighbors(b)l < k or distance(b,d) < maxdist(Neighbors(b),b) { 

Neighbors(b) t Closest(b,Neighbors(b) U d, k) 
if score(Neighbors(b),b) < c { 

11. } > I )  
// keep only the top n outliers 

// the cutoff is the score of the weakest outlier 

gorithm finds more extreme out!iers an& the cutoff increases 
along with pruning efficiency. 

Note that we assume that the examples in the data set are 
in random order. The examples can be put into random 
order in linear time and constant main memory with a disk 
based algorithm. One repeatedly shuffles the data set into 
random piles and then concatenates them in random order. 

In the worst case, the performance of the algorithm is very 
poor. Because of the nested loops, it could require O ( N 2 )  
distance computations and O(N/blocksite * N)  data ac- 
cesses. 

3. EXPERIMENTS ONSCALING PERFOR- 
MANCE 

In this section, we examine the empirical performance of 
.. the sim2ie-_a?gGr&hm on several large real data . . . sets. - - . The . . - 
primary question we are interested in answering is “How 
does the running time scale with the number of data points 
for large data sets?’’ In addition, we are also interested 
in understanding how the running time scales with k,  the 
number of nearest neighbors. 

To test our algorithm we selected the five real and one syn- 
thetic data set summarized in Table 2. These data sets span 
a range of problems and have very different types of features. 
We describe each in more detail. 

Corel Histogram. Each example in this data set en- 
codes the color histogram of an image in a collection of 
photographs. The histogram has 32 bins correspond- 
ing to eight levels of hue and four levels of saturation. 

Covertype. This data set represents the type of forest 
coverings for 30 x 30 meter cells in the Rocky Moun- 
tain region. For each cell, the data contains the cover 
type, which is the dominant tree species, and addi- 
tional attributes such as elevation, slope, and soil type. 

KDDCUP 1999. The KDDCUP data contains a set of 
records that represent connections to a military com- 
puter network where there have been multiple intru- 
sions by unauthorized users. The raw binary TCP data 
from the network has been processed into features such 
a s  the connection duration, protocol type, number of 
failed logins, and so forth. 

Census. This data set contains the responses from the 
1990 decennial Census in the United States. The data 
has information on both households and individuals. 
We divided the responses into two tables, one that 
stores household records and another that stores per- 
son reeords and we treated each table as its own data 
set. Both the Household and Person data sets have 
a variety of geographic, economic, and demographic 
variables. Our data comes from the 5% State public 
use microdata samples and we used the short variable 
list [20]. In total, the 5% State sample contains about 
5.5 million household and 12.5 million person records. 
For our experiments we used a maximum of 5 million 
records for each data set. 

Normal 300. This is a synthetic data set generated 
from a 30-dimensional normal distribution centered on 
the origin with a covariance matrix equal to the iden- 
tity matrix. 

We obtained the data sets Corel Histogram, Covertype, and 



KDDCup 1999 from the UCI KDD Archive [14] and the 
census data from the IPUMS repository [20]. 

Table 2: Description of D a t a  Se ts  
Data Set Features Continuous Examples 
Corel Histogram 32 32 68,040 
Covertyp e 55 10 581,012 
KDDCup 1999 42 34 4,898,430 
Household 1990 23 9 5,000,000 
Person 1990 55 20 5,000,000 
Normal 30D 30 30 1.000.000 

We? preprecessed the data by normalizing al! continuous vz i -  
ables to the range [0,1] and we converted all categorical vari- 
ables to an integer representation. We then randomized the 
order of examples in the data sets. Randomizing a file can 
be done in O(N)  time and constant main memory with a 
disk based shuffling algorithm as follows: Sequentially pro- 
cess each example in the data set by randomly placing it 
into one of %I different piles. Recombine the piles in random 
order and repeat this process a k e d  number of times. 

We ran our experiments on a lightly loaded Pentium 4 com- 
puter with a 1.5 GHz processor and 1GB RAM running 
Linux. We report the wall clock time, the time a user would 
have to wait for the output, in order to measure both CPU 
and I/O time. The reported times do not include the time 
needed for the initial randomization of the data set and rep- 
resent one trial. Preliminary experiments indicated that al- 
ternate randomizations did not have a major effect on the 
running time. To measure scaling, we generated smaller 
data sets by taking the first n samples of the randomized 
set. Unless otherwise noted, we ran experiments to return 
the top 30 anomalies with k = 5, a block size (IBI) of 1000 
examples, and we used the average distance to the nearest 
k neighbors as the score function. 

Our implementation of the algorithm was written in C++ 
and compiled with gcc version 2.96 with the - 0 3  optimiza- 
tion flag. We accessed examples in the data set sequentially 
using standard iostream functions and we did not write 
any special routines to perform caching. The total memory 
footprint of the executing program was typically less than 3 
MB. 

Figure 1 shows the total time taken to mine outliers on the 
six data sets as the-number-of examples varied. Note that 
both the z and y &xes are in a logarithmic scale. Each graph 
shows three lines. The bottom line represents the theoreti- 
cal time necessary to mine the data set given a linear algo- 
rithm based on the running time for N = 1000. The middle 
line shows the actual running times of our system. Finally, 
the top line shows the theoretical time needed assuming a 
quadratic algorithm based on scaling the running time for 
N = 1000. 

These results show that our simple algorithm gives extremely 
good scaling performance that is near linear time. The scal- 
ing properties hold for data sets with both continuous and 
discrete features and the properties hold over several or- 
ders of magnitude of increasing data set size. The plot- 
ted points follow nearly straight lines on the log-log graphs 

which means that the relationship between the y and x axis 
variables is of the form y = uzb or logy = loga + blogz, 
where a and b are constants. Thus, the aigorithm scaies 
with a polynomial complexitj. with an exponent equal to 
the slope of the line. Table 3 presents for each data set the 
slope of a regression line fit to the points in Figure 1. The 
algorithm obtained a polynomial scaling complexity with 
exponent varying from 1.13 to 1.32. 

Table 3: Slope b of the regression fit relating logt = 
loga + blogN (or t = a N b )  where t is the total t ime 
(CPU + I/O), N is the number o f  data points, and 
a is constant factor. 

Data Set slope 
Corel Histomam 1.13 " 
Covertype 1.25 
KDDCup 1999 1.13 
Household 1990 1.32 
Person 1990 1.16 
Normal 30D 1.15 

We also examined how the total runoing time scales with 
IC, the number of neighbors and the results for Normal 30D 
and Person (N = 1,000,000) are shown in Figure 2. The 
bottom line represents the observed time; the curved top 
line represents the time assuming linear scaling based on 
the timing results for k = 5 .  In these graphs, the y axis 
is logarithmic and the x axis is linear which means that 
a straight line indicates that the relationship between the y 
and z axis variables is of the form y = aebZ or logy = log a+ 
bx where a and b are constants. This relationship suggests 
that the running time scales exponentially with k. However, 
the.empirical value of b as determined by a regression fit is 
very small. For Normal 30D b = 0.0163 and for Person 
b = 0.0135. Practically, the observed scaling performance is 
much better than linear for k _< 100 , mainly because of the 
large fixed computation costs unrelated to k. 

4. ANALYSIS OF SCALING TIME 
In this section, we explain with an average case analysis 
why randomization in conjunction with pruning performs 
well especially when much of the past literature reported 
that nested loop designs were extremely slow because of the 
O ( N 2 )  distance computations. In particular, both Knorr 
and Ng [16] and Ramaswamy et al. [19] implemented ver- 
sions-of-the nested- loop algorithm and-reported quadratic 
performance. However, Knorr and Ng did not use pruning 
or randomization in their algorithm, and Ramaswamy et al. 
only incorporated pruning. 

Consider the number of distance computations needed to 
process an example x. For now we assume that we are using 
outlier definition 2, rather than definition 3 which we used 
in our experiment, for ease of analysis. With this definition 
an outlier is determined by the distance to its kth nearest 
neighbor. In order to process x we compare it with examples 
in the data set until we have either (1) found k neighbors 
within the cutoff distance d, in which case we eliminate it as 
it cannot be an outlier, or (2) we have compared it with all 
N examples in the data set and failed t o  find k neighbors 
within distance d, in which case it is classified as an outlier. 
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Figure 1: Total time (CPU and I/O) taken to mine outliers as N ,  the number of points, increases. The top 
and bottom lines represent the theoretical time taken by a quadratic and linear algorithm based on scaling 
the observed time at N = 1000. 
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We can think of this problem as a set of independent Bernoulli 
trials where we keep drawing instances until we have found 
k successes (k examples within distance d)  or we have ex- 
hausted the data set. Let ~ ( x )  be the probability that a 
randomly drawn example lies within distance d of point 2, 
let Y be a random variable representing the number of trials 
until we have k successes, and let P ( Y  = y) be the probabil- 
ity of obtaining the kth success on trial y. The probability 
P ( Y  = y) follows a negative binomial distribution: 

The number of expected samples we need to draw to process 
one example x is: 

y=k  ( v=k ) 
N N 

E [ Y ] = ) P ( Y = y ) y +  l - ) P ( Y = y )  N (2) 

The first term is the expectation of concluding a negative 
binomial series within N trials. That is, as we are process- 
ing an example, we keep drawing more examples until we 
have seen k that are within distance d, at which point we 
eliminate it because it cannot be an outlier. The second 

- term is the expected cost of-failing -tozonclude the negative 
binomial series within N trials, in which case we have ex- 
amined all N data points because the example is an outlier 
(less than k successes in N trials). 

The expectation of a negative binomial series with an infinite 
number of trials is, 

This is greater than the f i s t  term in Equation 2. Combining 
Equations 2 and 3 yields, 

N 

(4) 
k E [ Y ] I  -+ 1 ->:P(Y =y)  N 

4x1  ( y=k ) 

Surprisingly, the first term which represents the number of 
distance computations to eliminate non-outliers does not de- 
pend on N. The second term, which represents the expected 
cost of outliers (Le, we must compare with everything in the 
database and then conclude that nothing is close) does de- 
pend on N, yielding an overall quadratic dependency to pro- 
cess N exampies in total. However, note that we typically 
set the program parameters to return a small and possibly 
fixed number of outliers. Thus the first term dominates and 
we obtain near linear performance. 

One assumption of this analysis is that  the cutoff distance is 
k e d .  In practice, the cutoff distance varies during program 
execution, and the final cutoff required to return the top n 
outliers changes with N. However, the relationship between 
cutoff value and percentage of the data set processed often 
stays the same for different values of N. For example, Fig- 
ure 3 shows the plot of cutoff value against the percentage 
of the data set processed for different values of N. 

In general, we expect that if the final cutoff distance in- 
creases with larger N ,  then scaling will be better as ~ ( x )  is 
larger and any randomly selected example is more likely to 
be a success (neighbor). Conversely, if the cutoff distance 
decreases; t h e  scaling will be worse; -I= Figure-4-we-plotted 
the relationship between b, the empirical scaling factor, and 
c ~ ~ K / c ~ x ,  the ratio of the final cutoffs for N = 50000 and 
N = 5000 for the six data sets used in the previous sec- 
tion. We also plotted results for two additional data sets, 
Uniform 3D and Mixed 3D, which we believed would be 
respectively extremely difficult and easy. Uniform 3D is a 
three-dimensional data set generated from a uniform distri- 
bution between [-0.5,0.5] on each dimension. Mixed 3D is 
a mixture of the uniform data set (99%) combined with a 
Gaussian (1%) centered on the origin with covariance matrix 
equal to the identity matrix. 

The results indicate that for many data sets the cutoff ra- 
tio is near or greater than 1. The only data set with an 
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extremely low cutoff ratio was Uniform3D. The graph also 
indicates that higher values of the cutoff ratio are associated 
with better scaling scores (lower b) .  This supports our the- 
ory that the primary factor determining the scaling is how 
the cutoff changes as N increases. 
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the ratio of cutoff scores for  N = 50,000 and N = 
5,000. 

Figure 5 shows the running time plot for Uniform 3D and 
Mixed 3D. We expected Uniform 3D to have extremely bad 
scaling performance because i t  has no true outliers as the 
probability density is constant across the entire space. In- 
creasing N simply increases the density of points and drops 
the cutoff score but does not reveal rare outliers. In contrast, 
the results for Mixed3D were extremely good (b  = 1.11). In 
this data set, as we increase N we find more extreme outliers 
from the Gaussian distribution and the cutoff distance in- 

creases, thus improving pruning efficiency. Finally, we note 
that data sets with a true uniform distribution are probably 
rare in real domains. 

5. OUTLIERS IN CENSUS DATA 
Although the use of distance based outliers is well estab- 
lished, in this section, we show results from the census data 
to give the readers a qualitative idea of the types of outliers 
found when large data sets are mined. We also compare 
the discovered outliers with examples flagged as unusual by 
GritBot, a commercial program from RuleQuest Research 
that was designed to find anomalies in data [21]. 

As we have liclited space ir? this paper, we present only 
selected results. The full list of outliers on the Household 
and Person data sets for both our algorithm and GritBot 
are available online' and we encourage the readers to  view 
this list directly. 

We emphasize that we &e not claiming that one set of results 
is better than another, but rather we feel these results show 
that distance based outlier detection finds unusual examples 
of a qualitatively different nature than GritBot. 

5.1 Distance Based Outliers 
We report selected results from running our outlier detection 
algorithm on the full set of 5 million examples to return the 
top 30 outliers with k = 5. 

The top outlier in the household database is a single fam- 
ily living in San Diego with 5 married couples, 5 mothers, 
and 6 fathers. In the census data, a family is defined as a 
group of persons related by blood, adoption, or marriage. 
To be considered a mother or father, the person's child or 
children must be present in the household. The house had 
a reported value of $85K and was mortgaged. The total 
reported income of the household was approximately $86K 
for the previous year. 

Another outlier is a single family rural farm household in 
Florence, South Carolina. The house is owned free and clear 
by a married couple with no children. This example is un- 
usual because the value of the house is greater than $400K 
(not including the land), and they reported a household in- 
come of over $55OK. 

In the person data set one of the most extreme outliers was 
a 90+ year old Black Male w i t h - I ~ a l ~ a n ~ ~ c ~ s ~ r ~ - w ~ o  3Oes 
not speak English, was enrolled in school2, has a Doctor- 
ate degree, is employed as a baker, reported $llOK income 
of which $40K was from wages, $20K from business, $10K 
from farm, $15K from welfare, and $20K from investments, 
has a disability which limits but does not prevent work, was 
a veteran of the US. armed forces, takes public transporta- 
tion (ferry boat) to  work, immigrated to the US.  11-15 years 
ago but moved into his current dwelling 21-30 years ago. 
Clearly, there are inconsistencies in this record and we be- 
lieve that this record represents an improperly completed 
form. 

.- - - . - . . . . - . . . - . . -. 

~ 

http://www.isle.org/--sbay/papers/kdd03/ 
*Taking a course that a high school or college would accept 
for credit would count under Census definitions. 
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Figure 5: Total time (CPU and I/O) taken to  mine outliers on the data sets Uniform 3D ( b  = 1.76) and Mixed 
3D ( b  = 1.11). 

A second outlier was a 46 year old, White, widowed female 
living with 9 family members, two of which are her own chil- 
dren. She has a disability that limits but does not prevent 
her work as a bookkeeper or accounting clerk in the theater 
and motion picture industry. She takes public transporta- 
tion to work (bus or trolley) and it takes her longer than 99 
minutes to go from home to work. 

A third outlier was a 19 year old, White, female with Asian 
ancestry and Mexican Hispanic origin with a disability that 
limits but does not prevent work. She earned $123K in 
business income, and $38K in retirement income (which may 
include payments for disabilities), and is also enrolled in 
school. 

5.2 GritBot 
GritBot finds records that have a surprising value on one 
attribute given the values of other attributes. For example, 
an outlier GritBot found on the Person data set was 

case 481942: 
raced = White (31831 cases,  98.94% ‘Black”) 

ancestld = African American 
languagd = English 
- - -___ - - - - - - __ - ._ . - . . 

million person records. 

Since GritBot and our algorithm compute two different sets 
of outliers, precise comparisons of their running times is not 
very meaningful. However, to give the reader a rough idea of 
their performance, GritBot took approximately 70 minutes 
to process one million household records and 170 minutes 
to process one half million person records on a 550 MHz 
SGI Origin 3000 with 4 GB of memory. In comparison, our 
algorithm took 87 and 18 minutes respectively to process 
similar amounts of data on a 1.5 GHz Pentium 4 with 1 GB 
of m e m ~ r y . ~  

In contrast to the results from distance based outliers, Grit- 
Bot found qualitatively different outliers. For example, on 
the household data GritBot found a total of 266 anomalies. 
These anomalies could be divided into roughly three groups: 

228 records for which the household was listed as “Ru- 
ral” although another field indicated that the house- 
hold was urban (e.g., metro = In metro area - Central 
city or citypop > 100000) 

0 28 records for which the household was listed as “Ur- 
ban” although another field indicat6d-thit-the-kiouZ: 
hold was rural. 

~----  - -  _ _  __..__. 

This means that 98.94% of people who have African Amer- 
ican ancestry and who speak English, listed their race as 
Black. Case 481942 is unusual because the race listed was 
White. to the family income. 

10 records with a total family income (ftotinc) greater 
than the household income (hhincome). By definition 
the household income should be greater than or equal 

We were not able to run GritBot on the household and per- 
son data sets with five million examples because of memory 
limitations. GritBot’s requirements exceeded the available 
main memory as it loaded the entire data set and then allo- 
cated additional memory during program execution. How- 
ever, we were able to run GritBot on smaller data sets, and 
specifically, we ran GritBot using the default settings on 
approximately one million household records and one half 

On the person data set, GritBot found a total of 1407 anoma- 
lies. Unlike the household data, we could not place the ex- 
amples into neat categories, but as before GritBot found 
records with unusual combinations of attributes which in- 
cluded 

3The datasets were not exactly identical as they contained 
different samples of the Census records. 



people with unusual combinations of ethnicity, His- 
panic origin, and race. For example, GritBot found 
records for people who are White and African-American, 

as they are tied together by a common ho~seho ld .~  How- 
ever, the performance on this data set ( b  = 1.16) was still 
very good. 

Black and Italian, Black and Swedish, Black and Ger- 
man, Black and Polish, Hispanic and Scotch-Irish. 

people who live in the same house where they lived 5 
years ago, but also claimed to  live in a different country 
five years ago. 

people who don’t work, but have a place of work. 

a person whose ancestry is Mexican, but the language 

a 16 year old person who last worked more t h m  10 

spoken at home is Chinese. 

years ago. 

a 75 year old female veteran 

In general, GritBot tended to find examples in which a small 
number of attributes made the example unusual. This is not 
surprising as by default GritSot is set to exanine fonr or 
less conditions. However, GritBot often did not use all four 
conditions and many outliers had only one or two terms. 

6. LIMITATIONS AND FUTURE WORK 
The main goal of our experimental study was to show that 
our algorithm could scale to very large data sets. We showed 
that on large, real, high-dimensional data sets the algorithm 
had near linear scaling performance. However, the algorithm 
depends on a number of assumptions, violations of which can 
lead to poor performance. 

First, our algorithm assumes that the data is in random 
order. If the data is not in random order and is sorted then 
the performance can be poor. For example, the Census data 
as retrieved from the IPUMS repository [20] came with the 
examples sorted by state. This can cause problems when 
our algorithm considers a person from Wyoming. It will try 
to eliminate it by finding the k nearest neighbors who are 
also likely to be from Wyoming. To find these neighbors, the 
algorithm will first scan all examples from states Alabama to 
Wisconsin given the sequential manner it accesses the data. 

Second, our algorithm depends on the independence of ex- 
amples. If examples are dependent in such a way that they 
have similar values (and will likely be in the set of k near- 
est neighbors) this can cause performance to be poor as the 
aIgGitlim- may have to scan the entire dat-a set to find the 
dependent examples. 

An extreme version of this problem can occur when the data 
set originates from a flattened relational database For exam- 
ple, if there are two tables X and Y, with each example in 
X pointing to several different objects in Y, our flattened 
database will have examples with form (XI, YI), (XI, Yz), 
(XI, Y3), (&, Y4), . . . and so forth. As it is likely that the 
closest neighbors of ( X I ,  YI) will be the examples (XI ,  Yz) 
and (XI ,  Y3) our algorithm may have to scan the entire data 
set until it finds them to obtain a low score. 

The thud situation when our algorithm can perform poorly 
occurs when the data does not contain outliers. For exam- 
ple, our experiment with the examples drawn from a uniform 
distribution had very poor scaling. However, we believe data 
sets of this type are likely to be rare as most physical quan- 
tities one can measure have distributions with tails. 

We are interested in extending our work in this paper in 
several ways. First, we are interested in speeding up the 
algorithm even further. In Section 4 we showed that the 
scaling performance depended on how the cutoff changes 
as we process increasingly larger data sets. The algorithm 
starts with a cutoff threshold of zero which increases as bet- 
ter outliers are found. One modification is to start the al- 
gorithm with a pre-defined cutoff threshold below which we 
would consider any example to be uninteresting. In prelim- 
inary experiments, a good initial guess could cut time to 
a third. There may also be automatic ways to get a good 
cutoff early. For example, we could first process the exam- 
ples with a small data set to get an idea of the exampies 
that are most unusual. We then place these examples at the 
beginning of the data file. 

Another pressing limitation is that our work has only ad- 
dressed finding outliers in the data sets that can be repre- 
sented with a vector space or equivalently a single table in a 
database. Many real data sources will be in the form of re- 
lational databases with multiple tables that relate different 
types of information to each other. 

To address relational data, the simplest solution is to flat- 
ten the database with join operators to form a single table. 
While this is a convenient solution it loses much of the infor- 
mation available. For instance, a flattened database cannot 
easily represent households that have a variable number of 
individuals. We also found that flattening a database could 
create dependencies between examples and, as we explained 
above, this can reduce the effectiveness of randomization 
and pruning. 

We are currently investigating how we can extend our al- 
gorithm to handle relational data natively. There are two 
research questions that arise. First, how does one define a 
dishnce .me$ric- to  compare objects whi@ may have a. VKi- 
able number of linked objects? There has been some work 
on defining metrics for relational data [6, 9, 151. The central 
idea is to apply a recursive distance measure. That is, t o  
compare two objects one starts by comparing their features 
directly, and then moves on to compare linked objects and 
so on. Second, how does one efficiently retrieve an object 
and it’s related objects to compare them in the context of 
searching for outliers? Retrieving related objects may in- 
volve extracting records in a non-sequential ordering and 
this can greatly slow database access. 

However, our algorithm may still perform acceptably on 
data sets with less severe violations: For example, the exam- 
ples in the Person data set are not completely independent 

4The Census microdata is based on cluster samples, i.e., the 
samples are made of households or dwellings from which 
there may be multiple individuals. Individuals from the 
same household are not independent. 



Finally, there are many practical issues with algorithms for 
mining distance based outliers that we did not investigate 
such as determining how to set algorithm parameters such as 
k, the block size, the distance measure, and the score func- 
tion. Each of these parameters can have a large effect on 
the discovered outliers (or running time for the block size). 
In supervised classification tasks one can set these param- 
eters to maximize predictive performance by using a hold 
out set or cross-validation to estimate out of sample perfor- 
mance. However, outlier detection is unsupervised and no 
such training signal exists. 

7. CONCLUSIONS 
In our work applying outlier detection algorithms to large, 
real databases a major limitation has been scaling the al- 
gorithms to handle the volume of data. In this paper, we 
addressed the scaling problem with an algorithm based on 
randomization and pruning which finds outliers on many 
real data sets in near linear time. This efficient scaling al- 
lowed us to mine data sets with millions of examples and 
many features. 
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